Über Approximation stetiger Funktionen in Orliczräumen

PETER KOSMOL

Mathematisches Seminar der Universität, Kiel, Germany Communicated by P. L. Butzer

Received March 10, 1971

DEDICATED TO PROFESSOR I. J. SCHOENBERG ON THE OCCASION OF HIS 70TH BIRTHDAY

Die vorliegende Arbeit stelle sich zur Aufgabe, einige Fragen zur Approximation von Funktionen in Orlicz-Räumen zu behandeln. Diese Klasse von Funktionenräumen bietet sich wegen ihrer Vielfalt an und ihre maßtheoretische Struktur erlaubt die Übertragung einiger klassischer Sätze der Approximationstheorie in L_n . Manche der Beweise scheinen sogar einfacher zu werden. Nach einer kurzen Zusammenstellung einiger Eigenschaften von Youngschen Funktionen und Orlicz-Räumen werden in §1 mit Hilfe der allgemeinen Approximationstheorie in normierten Räumen und der Strukturtheorie der Orlicz-Räume Existenz, Eindeutigkeit und Charakterisierung der besten Approximation untersucht. Danach werden Fragen behandelt, die bei der endlichdimensionalen Approximation stetiger Funktionen bezüglich der Luxemburg-Norm in Orlicz-Räumen auftreten: Das Nullstellenverhalten der Fehlerfunktion wird in §2 unter verschiedenen Voraussetzungen an die den Orlicz-Raum definierende Youngsche Funktion studiert. Dadurch wird das unterschiedliche Verhalten von L_1 und L_p (p > 1) in dieser Frage in einem neuen Licht erscheinen. Die Sätze über das Nullstellenverhalten führen zu einer Verallgemeinerung des Jacksonschen Eindeutigkeitssatzes der besten L₁-Approximation bezüglich Haarscher Teilräume. Den Abschluß bildet eine Abschätzung des n-ten Fehlers mittels eines verallgemeinerten Satzes von Bernstein und eine numerische Methode zur Berechnung der besten L^{ϕ} -Approximation. An anderer Stelle (s. [3]) wurde der Zusammenhang der Čebyšew-Approximation und der L^{Φ} -Approximation mittels des Polyaalgorithmus beschrieben.

Zum Studium der Approximationstheorie in Orlicz-Räumen wurde ich von K. Urbanik angeregt. J. Wloka und K. Floret haben die Entstehung dieser Arbeit durch wertvolle Hinweise gefördert. Ihnen allen gilt mein Dank.

Orliczräume

Eine nicht identisch verschwindende, symmetrische, konvexe Funktion Φ von R in $R \cup \{\infty\}$ mit $\Phi(0) = 0$ heißt Youngsche Funktion. (Der Fall

$$\Phi(s) - \begin{pmatrix} 0 & \text{für } s = 0 \\ 0 & \text{für } s \neq 0 \end{pmatrix}$$

sei ausgeschlossen).

Mit Φ is auch die Funktion

$$\Psi(r) = \sup_{s \ge 0} (|r| \cdot s - \Phi(s)) \tag{1}$$

eine Youngsche Funktion. Φ und Ψ werden zueinander $komplement \ddot{a}r$ genannt.

Aus (1) folgt die Youngsche Ungleichung

$$s \cdot r \leqslant \Phi(s) + \Psi(r). \tag{2}$$

Hierbei gilt die Gleichheit genau dann, wenn $s=\Psi'(r)$ oder $r=\Phi'(s)$ ist. Φ' und Ψ' bedeuten für $s\geqslant 0$ die rechtsseitigen Ableitungen von Φ und Ψ , die immer existieren und nichtabnehmende, rechtsseitig stetige Funktionen sind; gilt dabei für s>0 $\lim_{r\to s^+}\Phi(r)=\infty$, so setzt man $\Phi'(s)=\infty$. Für s<0 wird $\Phi'(s)=-\Phi'(-s)$ (bzw. $\Psi'(s)=-\Psi'(-s)$) gesetzt. Es gilt

$$\Phi(s) = \int_0^{|s|} \Phi'(r) dr.$$

Umgekehrt, jede nichtabnehmende, nichtnegative Funktion p(s) (nicht identisch Null) definiert durch

$$\Phi(s) = \int_0^{|s|} p(r) dr \tag{3}$$

eine Youngsche Funktion.

Sind Φ' und Ψ' stetig, so sind Φ' und Ψ' , im gewöhnlichen Sinne, zueinander inverse Funktionen (s. [14, S. 76])

Ist
$$\Phi$$
 endlich, so ist Φ stetig (s. [15, S. 68]) (4)

Im weiteren wollen wir folgende Terminologie benutzen:

 Φ heißt im erweiterten Sinne stetig, wenn $\Phi(s)$ stetig ist für

$$|s| < S_0 = \sup_{\Phi(r) < \infty} r \quad \text{und} \quad \lim_{|s| \to S_0^-} \Phi(s) = \infty$$
 (5)

ist.

Bemerkung. Für jede Youngsche Funktion Φ gilt $\lim_{s\to\infty} \Phi(s) = \infty$, so daß alle stetigen (das sind also genau die endlichwertigen) Youngschen Funktionen auch im erweiterten Sinne stetig sind.

 Φ heißt definit, wenn

$$\Phi(s_0) = 0 \Leftrightarrow s_0 = 0. \tag{6}$$

Eine Youngsche Funktion Φ erfüllt die Δ_2 -Bedingung, wenn eine Konstante k>0 existiert, so daß

$$\Phi(2s) \leqslant k\Phi(s)$$
 für alle $s \geqslant 0$ (7)

gilt; insbesondere sind solche Φ auch endlich.

Äquivalent dazu ist, daß es zu jeder Zahl $l \sin k(l) > 0$ gibt, so daß

$$\Phi(ls) \leqslant k(l) \Phi(s)$$
 für alle $s \geqslant 0$.

Wir kommen nun zur Definition eines Orliczraumes. Seien Φ eine Youngsche Funktion und (T, Σ, μ) ein Maßraum mit der "finite subset property" = (F.S.P), d.h. jede Menge mit positivem Maß hat eine Teilmenge von endlichem positivem Maß.

Für meßbare Funktionen x auf T definieren wir (die Orlicz-Norm)

$$||x||_{\Phi} = \sup \left\{ \int_{T} |x \cdot y| d\mu : y \text{ meBbar und } \int_{T} \Psi(y) d\mu \leqslant 1 \right\}$$
 (8)

und (die Luxemburg-Norm)

$$||x||_{(\phi)} = \inf \left\{ c^{-1} : \int_{T} \Phi(cx) \, d\mu \leqslant 1, c > 0 \right\}.$$
 (9)

Der Orliczraum $L^{\phi}(\mu)$ ist nun die Menge aller meßbaren Funktionen auf T, für die $||x||_{\phi} < \infty$ ist.

Die Funktionale $\|\cdot\|_{\varphi}$ und $\|\cdot\|_{(\varphi)}$ definieren äquivalente Normen auf $L^{\varphi}(\mu)$, und es ist

$$||x||_{(\phi)} \leqslant ||x||_{\phi} \leqslant 2 ||x||_{(\phi)}, \quad x \in L^{\phi}(\mu).$$

Mit diesen Normen ist $L^{\Phi}(\mu)$ ein Banachraum.

Weiter seien

$$\tilde{L}^{\phi}(\mu) = \left\{ x \in L^{\phi}(\mu)_{1} : \int_{T} \Phi(x) \, d\mu < \infty \right\},$$

$$M^{\phi}(\mu) = \left\{ x \in L^{\phi}(\mu) : \int_{T} \Phi(kx) \, d\mu < \infty \text{ für alle } k > 0 \right\}$$
(10)

und

 $\mathfrak{M}^{\phi}(\mu)$ der von den Treppenfunktionen aus $L^{\phi}(\mu)$ aufgespannte abgeschlossene Teilraum von $L^{\phi}(\mu)$. (11)

Es gilt $M^{\phi} \subseteq \mathfrak{M}^{\phi}$. Ist Φ stetig, dann gilt sogar $M^{\phi} = \mathfrak{M}^{\phi}$. Erfüllt Φ außerdem die Δ_2 -Bedingung (7), dann ist

$$M^{\phi} = \mathfrak{M}^{\phi} = L^{\phi} = \tilde{L}^{\phi} \tag{12}$$

(s. [8, S. 555-557]).

Sind Φ und Ψ komplementäre Youngsche Funktionen, so gilt für alle Paare von Funktionen $x \in L^{\Phi}$ und $y \in L^{\Psi}$ die Höldersche Ungleichung

$$\left| \int_{T} x \cdot y \, d\mu \right| \leq \|x\|_{\phi} \cdot \|y\|_{\psi}. \tag{13}$$

Somit definiert jede Funktion $y \in L^{\Psi}$ durch

$$f(x) = \int_T x \cdot y \, d\mu$$

ein stetiges lineares Funktional auf L^{ϕ} . Aus der Youngschen Ungleichung (2) kann man

$$||f|| \leq ||y||_{\Psi} \leq 2||f||$$

folgern (s. [4, S. 124]).

Folglich läßt sich L^{ψ} als ein vollständiger linearer Teilraum von $(L^{\phi})^*$ betrachten, der jedoch verschieden von $(L^{\phi})^*$ sein kann.

- (a) Ist μ ein σ -endliches, nicht-endliches und nicht-atomares Maß, dann ist $L^{\Psi} = (L^{\Phi})^*$ (topologische Isomorphie) genau dann, wenn Φ die Δ_2 -Bedingung erfüllt.
- (b) Ist μ hingegen ein endliches nicht-atomares Maß, dann ist $L^{\psi} = (L^{\psi})^*$ (topologische Isomorphie) genau dann, wenn die folgende abgeschwächte Δ_2 -Bedingung erfüllt ist: Es existieren $s_0 > 0$ und k > 0, so daß

$$\Phi$$
 (2s) $\leqslant k\Phi(s)$ für $s \geqslant s_0$ and $\Phi(s_0) < \infty$ (14)

gilt

(s. [6, S. 1468], [4, S. 130]).

1. Existenz, Eindeutigkeit und die Charakterisierung der Besten Approximation in Orliczräumen

SATZ 1. Sei $L^{\phi}(\mu)$ ein Orliczraum (μ mit FSP). Dann sind bzgl. der Luxemburg-Norm folgende Aussagen äquivalent.

- (a) Alle abgeschlossenen Teilräume von $L^{\Phi}(\mu)$ sind proximinal.
- (b) Alle abgeschlossenen Teilräume von $L^{\Psi}(\mu)$ sind proximinal.
- (c) $L^{\Phi} = M^{\Phi} \text{ und } L^{\Psi} = M^{\Psi}.$
- (d) $L^{\Phi}(\mu)$ ist reflexiv.

Ist μ σ -endlich und nicht-atomar, so ist für $\mu(T) = \infty$ auch die folgende Aussage zu (a)–(d) äquivalent:

- (e') Φ und Ψ erfüllen die Δ_2 -Bedingung und im Falle $\mu(T) < \infty$
- (e") Φ und Ψ erfüllen die abgeschwächte Δ_2 -Bedingung (14).

Beweis. Die Äquivalenz von (c) und (d) hat Rao (s. [8, S. 568]) und diejenige von (d) und (a) James (s. [9, S. 99]) bewiesen. Aus der Reflexivität des Orliczraumes folgt die Äquivalenz von (a) und (b). Ferner hat Milnes (s. [6, S. 1468]) die Äquivalenz von (d) und (e') bzw. (e") bewiesen. Q.E.D.

Zusatz. Seien μ ein σ -endliches und nicht-atomares $Ma\beta$ und Φ definit. Dann sind folgende Aussagen äquivalent:

- (a) Alle Teilräume von $L^{\Phi}(\mu)$ sind semi-čebyšewsch.
- (b) Die komplementäre Funktion Ψ sowie deren Ableitung Ψ' sind im erweiterten Sinne stetig.

Beweis. Nach Milnes und Rao (s. [7, S. 682]) ist (b) genau dann erfüllt, wenn $L^{\phi}(\mu)$ strikt konvex ist. Ein normierter Raum ist jedoch strikt konvex genau dann (s. [9, S.110]), wenn alle Teilräume semi-čebyšewsch sind.

Bemerkung. Aus der strikten Konvexität der Youngschen Funktion folgt die strikte Konvexität von $L^{\phi}(\mu)$ für beliebige μ mit F.S.P. (s. [7, S. 681]). Im weiteren werden wir folgende Charakterisierung der besten Approximation benutzen.

SATZ 2. Seien Φ und Φ' stetig, V ein Teilraum von $\mathfrak{M}^{\Phi}(\mu)$ (μ mit F.S.P.) und $x_0 \in \mathfrak{M}^{\Phi}(\mu) \setminus \overline{V}$. Es ist $v_0 \in P_V(x_0)$ (bzgl. der Luxemburg-Norm) genau dann, wenn

$$\int_T v\Phi'\left(\frac{x_0-v_0}{\|x_0-v_0\|}\right)d\mu=0 \qquad \text{für alle } v\in V.$$

Beweis. Nach Rao (s. [7, S.674]) ist die Luxemburg-Norm $\|\cdot\|_{(\phi)}$ im Punkt $x_0 - v_0$ schwach differenzierbar, und für die schwache Ableitung gilt

$$g(x_0-v_0\,,x)=\frac{\displaystyle\int_T x\Phi'\left(\frac{x_0-v_0}{\parallel x_0-v_0\parallel}\right)d\mu}{\displaystyle\int_T \left(\frac{x_0-v_0}{\parallel x_0-v_0\parallel}\right)\Phi'\left(\frac{x_0-v_0}{\parallel x_0-v_0\parallel}\right)d\mu}\,.$$

Nach dem Satz von Mazur ist x_0 - v_0 ein Flachpunkt und die zugehörige Stützhyperebene wird durch das Gateaux-Differential dargestellt, so daß nach I. Singer (s. [9, S. 23]) die Behauptung folgt. Q.E.D.

Bemerkung Ist Φ stetig, dann ist die komplementäre Funktion Ψ genau dann stetig, wenn

$$\lim_{s\to\infty}\Phi'(s)=\infty.$$

Beweis. Ist $\lim_{s o\infty}\Phi'(s)=\alpha<\infty$ dann folgt für s>0 aus der Integraldarstellung für Φ

$$|r| \cdot s - \Phi(s) \geq |r| s - \alpha \cdot s$$

also für $|r| > \alpha$

$$\Psi(r) = \sup_{s \ge 0} |r| \cdot s - \Phi(s) = \infty.$$

Ist $\lim_{s\to x} \Phi'(s) = \infty$, dann gibt es zu jedem r>0 sein s_0 mit $\Phi'(s_0)>r$. So ist für $s>s_0$

$$rs - \int_0^s \Phi'(t) dt = rs_0 + r(s - s_0) - \int_0^{s_0} \Phi'(t) dt - \int_{s_0}^s \Phi'(t) dt \leqslant rs_0 - \Phi(s_0)$$

also

$$\Psi(r) < \infty$$
 für alle $r > 0$.

Nach (4) is $\Psi(r)$ stetig.

Q.E.D.

Somit definiert die Integraldarstellung (3) für jede nicht-negative, nicht-abnehmende, beschränkte Funktion p eine stetige Youngsche Funktion Φ , deren komplementäre Funktion Ψ unstetig ist.

2. Das Nullstellenverhalten der Fehlerfunktion bei Endlichdimensionaler Approximation der Stetigen Funktionen in Orliczräumen

Im weiteren sei μ ein Lebesgue-Stieltjes Maß, das durch eine streng wachsende und beschränkte Funktion auf [a, b] bestimmt ist. Da aus der gleichmäßigen Konvergenz auf [a, b] die $L^{\phi}(\mu)$ -Konvergenz folgt, gilt

$$C[a, b] \subseteq \mathfrak{M}^{\phi}(\mu) \subseteq L^{\phi}(\mu).$$

Für die sup-Norm werden wir die Bezeichnung $\|\cdot\|_{\infty}$ benutzen.

Lemma 1. Sei Φ eine stetige Youngsche Funktion,

$$x \in \mathfrak{M}^{\phi}(\mu)$$
 und $||x||_{(\phi)} > 0$.

Dann ist

$$\int_{T} \Phi\left(\frac{x}{\|x\|_{(\Phi)}}\right) d\mu = 1.$$

Beweis. Da Φ stetig, gilt $\mathfrak{M}^{\Phi} = M^{\Phi}$.

Durch Betrachtung der stetigen Funktion $k \to \int_T \Phi(x/k)$ erhält man damit das gewünschte Ergebnis. Q.E.D.

Insbesondere wird also das Infimum in der Definition der Luxemburg-Norm angenommen.

SATZ 3. Seien Φ und Φ' stetig, V ein n-dimensionaler Haarscher Teilraum von C[a, b], $x \in C[a, b] \setminus V \subset L^{\Phi}(\mu)$ und $v_0 \in P_V(x)$ (bezüglich der Luxemburg-Norm in $L^{\Phi}(\mu)$). Dann hat $x - v_0$ im Intervall [a, b] mindestens n Nullstellen mit Vorzeichenwechsel.

Beweis. Nach Satz 2 ist $v_0 \in P_V(x)$ (bezüglich der Luxemburg-Norm) genau dann, wenn

$$\int_a^b v \Phi' \left(\frac{x - v_0}{\|x - v_0\|} \right) d\mu = 0 \quad \text{für alle } v \in V$$

gilt.

Nehmen wir an, daß $x - v_0$ nur an k < n Stellen im Intervall [a, b] das Vorzeichen wechselt.

Dann kann man (s. [13, S. 64]) $0 \neq v_1 \in V$ finden, so daß für alle $t \in [a, b]$

$$v_1(t)\operatorname{sign}(x(t)-v_0(t))\geqslant 0$$

ist. Da aber

$$x - v_0 \not\equiv 0$$
 und $\Phi'\left(\frac{x - v_0}{\|x - v_0\|}\right) \not\equiv 0$ (weil $\int_a^b \Phi\left(\frac{x - v_0}{\|x - v_0\|}\right) d\mu = 1$ ist)

gilt, erhalten wir (unter Beachtung der Voraussetzungen über μ)

$$\int_{a}^{b} v_{1} \Phi'\left(\frac{x-v_{0}}{\parallel x-v_{0} \parallel}\right) d\mu = \int_{a}^{b} v_{1} \operatorname{sign}(x-v_{0}) \Phi'\left(\frac{\parallel x-v_{0} \parallel}{\parallel x-v_{0} \parallel}\right) d\mu > 0$$

und damit einen Widerspruch.

Q.E.D.

Der Orliczraum L_1 erfüllt die Voraussetzungen von Satz 3 nicht (weil die rechtsseitige Ableitung Φ' hier nicht stetig ist). Für den Raum L^1 gilt jedoch nach Jackson eine Alternative (s. [2, S.326]), die durch den folgenden Satz verallgemeinert wird. (Dabei sei bemerkt, daß es Funktionen Φ gibt, die die Voraussetzungen vom Satz 3, nicht aber die vom Satz 4 erfüllen, z.B. $\Phi(s) = e^{|s|} - |s| - 1$.)

SATZ 4. Seien Φ eine Youngsche Funktion, die die Δ_2 -Bedingung erfüllt, $v_0 \in P_V(x)$ (bezüglich der Luxemburg-Norm) und V ein n-dimensionaler Haarscher Teilraum. Dann hat $x = v_0$ mindestens n Nullstellen mit Vorzeichenwechsel oder das Ma β der Menge der Nullstellen von $x = v_0$ is positiv.

Beweis (indirekt). Sei Z die Menge der Nullstellen von $x - v_0$. Hat $x - v_0$ nur k Nullstellen mit Vorzeichenwechsel, etwa t_1 , t_2 ,..., t_k (k < n), so kann man (s. [13, S. 64]) ein $0 \neq v_1 \in V$ finden, so daß

$$sign v_1(t) = sign(x(t) - v_0(t)) \qquad \text{für alle } t \in [a, b] Z$$
 (1)

gilt.

Ist auch $\mu(Z) = 0$, so folgt aus der Regularität des Maßes μ . daß man zu jedem $\epsilon > 0$ eine offene Menge $B \subseteq [a, b]$ mit $\mu(B) < \epsilon$ und $B \supseteq Z$ finden kann. Sei $B_0 \subseteq [a, b]$ eine offene Menge mit

$$B_0 \supset Z$$
 und $0 < \mu(B_0) < \mu([a, b])$.

Das Komplement A_0 von B_0 in [a, b] ist dann abgeschlossen. Seien

$$m = \min_{t \in A} |v_1(t)| > 0$$
 and $S = \sup_{t \in B_n} |v_1(t)| > 0$.

Die Youngsche Funktion Φ erfüllt nach Voraussetzung die Δ_2 -Bedingung, man kann also eine Konstante k>0 finden, so daß

$$\Phi\left(\frac{S}{m}s\right) \leqslant k\Phi(s)$$
 für alle $s > 0$ (2)

gilt.

Nun wählen wir ein $0 < \epsilon < \mu(A_0)/k$ und ferner eine offene Menge B_1 , die in B_0 enthalten ist und für die $B_1 \supseteq Z$ und $\mu(B_1) < \epsilon$ gilt. Sei A_1 das Komplement von B_1 in [a,b]. Aus der Δ_2 -Bedingung folgt, daß Φ definit ist, und so gilt wegen (2) für alle $\lambda > 0$

$$\int_{B_{1}} \Phi\left(\frac{v_{1}}{\lambda}\right) \leqslant \int_{B_{1}} \Phi\left(\frac{S}{\lambda}\right) = \mu(B_{1}) \cdot \Phi\left(\frac{S}{\lambda}\right) \leqslant \mu(B_{1}) \cdot k\Phi\left(\frac{m}{\lambda}\right)
< \mu(A_{0}) \cdot \Phi\left(\frac{m}{\lambda}\right) = \int_{A_{0}} \Phi\left(\frac{m}{\lambda}\right) \leqslant \int_{A_{0}} \Phi\left(\frac{v_{1}}{\lambda}\right) = \int_{A_{1}} \Phi\left(\frac{v_{1}}{\lambda}\right).$$
(3)

Für ein genügend kleines $\lambda_0 > 0$ ist

$$0 < \lambda_0 \| v_1 \|_{\infty} < \min_{t \in A_1} | x(t) - v_0(t) .$$

Es ist $c_0 := ||x - v_0||_{(\phi)} > 0$, da andernfalls $x \in V$ und somit Z = [a, b].

Dann gilt, wegen (1), für $t \in A_1$

$$\Phi\left(\frac{x(t) - v_0(t) - \lambda_0 v_1(t)}{c_0}\right) \\
= \int_0^{(1/c_0) |x - v_0 - \lambda_0 v_1|} \Phi'(s) \, ds \leqslant \int_0^{(1/c_0) |x - v_0|} \Phi'(s) \, ds - \int_0^{(1/c_0) |\lambda_0 v_1|} \Phi'(s) \, ds \\
= \Phi\left(\frac{x(t) - v_0(t)}{c_0}\right) - \Phi\left(\frac{\lambda_0 v_1(t)}{c_0}\right)$$

und für $t \in B_1$

$$\Phi\left(\frac{x(t)-v_0(t)-\lambda_0v_1(t)}{c_0}\right)\leqslant \Phi\left(\frac{x(t)-v_0(t)}{c_0}\right)-\Phi\left(\frac{\lambda_0v_1(t)}{c_0}\right).$$

Nach (3) und Lemma 1 ist damit

$$\int_{a}^{b} \Phi\left(\frac{x-v_{0}-\lambda_{0}v_{1}}{c_{0}}\right) = \int_{A_{1}} \Phi\left(\frac{x-v_{0}-\lambda_{0}v_{1}}{c_{0}}\right) + \int_{B_{1}} \Phi\left(\frac{x-v_{0}-\lambda_{0}v_{1}}{c_{0}}\right)
+ \int_{A_{1}} \Phi\left(\frac{x-v_{0}}{c_{0}}\right) - \int_{A_{1}} \Phi\left(\frac{\lambda_{0}v_{1}}{c_{0}}\right)
+ \int_{B_{1}} \Phi\left(\frac{x-v_{0}}{c_{0}}\right) + \int_{B_{1}} \Phi\left(\frac{\lambda_{0}v_{1}}{c_{0}}\right)
= \int_{a}^{b} \Phi\left(\frac{x-v_{0}}{c_{0}}\right) - \int_{A_{1}} \Phi\left(\frac{\lambda_{0}v_{1}}{c_{0}}\right) + \int_{B_{1}} \Phi\left(\frac{\lambda_{0}v_{1}}{c_{0}}\right)
= 1 - \int_{A_{1}} \Phi\left(\frac{\lambda_{0}v_{1}}{c_{0}}\right) + \int_{B_{1}} \Phi\left(\frac{\lambda_{0}v_{1}}{c_{0}}\right) < 1.$$

Lemma 1 wieder angewandt, ergibt

$$||x - v_0 - \lambda_1 v_1||_{(\phi)} < ||x - v_0||_{(\phi)}.$$

Die Annahme, daß $x - v_0$ weniger als n Nullstellen mit Vorzeichenwechsel hat und $\mu(z) = 0$ ist, führt zum Widerspruch, weil $v_0 \in P_{\nu}(x)$ vorausgesetzt wurde. Q.E.D.

Verzichtet man noch auf die Δ_2 -Bedingung, so erhält man im Falle der Approximation mit Polynomen den folgenden

SATZ 5. Sei Φ definit und stetig, V der Raum der Polynome höchstens (n-1)-ten Grades, und sei $v_0 \in P_V(x)$. (Luxemburg-Norm) Dann hat $x-v_0$ mindestens n Nullstellen.

Beweis. Angenommen $x-v_0$ hat nur l < n Nullstellen. Seien $t_1 < t_2 < \cdots < t_k$ die Nullstellen, in denen $x-v_0$ das Vorzeichen wechselt, und sei N die Menge der restlichen Nullstellen von $x-v_0$. Dann gibt es ein Polynom $v_1(t)=(t-\alpha)^j\prod_{i=1}^k(t-t_i)$ ($\alpha < a$) vom Grade $\leq n-1$, das in den Intervallen $[t_i,t_{i-1}]$ seine Betragsmaxima nicht in den Punkten aus N annimmt.

Man kann nun eine disjunkte Zerlegung von [a, b] in Intervalle A_s und B_s angeben derart, daß

- (1) $|A_s| > |B_s|$ und A_s abgeschlossen
- (2) $\min_{t \in A_s} |v_1(t)| = \sup_{t \in B_s} |v_1(t)|$
- (3) es existiert ein $\epsilon > 0$ mit

$$|x(t)-v_0(t)|>\epsilon |v_1(t)|$$
 für alle $t\in\bigcup_s A_s$.

Sei $c := \|x - v_0\|_{(\phi)}$. Dann ist wie im Beweis von Satz 4

$$\begin{split} 1 &= \int_{a}^{b} \left(\frac{x - v_0}{c} \right) = \int_{\cup_{s} A_s} \Phi \left(\frac{x - v_0}{c} \right) \\ &+ \int_{\cup_{s} B_s} \Phi \left(\frac{x - v_0}{c} \right) \geqslant \sum_{s} \int_{A_s} \Phi \left(\frac{x - v_0 - \epsilon v_1}{c} \right) \\ &+ \sum_{s} \int_{A_s} \Phi \left(\frac{\epsilon v_1}{c} \right) + \sum_{s} \int_{B_s} \Phi \left(\frac{x - v_0 - \epsilon v_1}{c} \right) \\ &- \sum_{s} \int_{B_s} \Phi \left(\frac{\epsilon v_1}{c} \right) > \int_{a}^{b} \Phi \left(\frac{x - v_0 - \epsilon v_1}{c} \right), \end{split}$$

da Φ definit ist. Das ist ein Widerspruch zu $v_0 \in P_{\nu}(x)$. Q.E.D.

3. Eine Verallgemeinerung Eines Satzes von Jackson auf Orliczräume

Im Anschluß an Satz 1 hatten wir festgestellt, daß die besten Approximationen in einem Orliczraum L^{Φ} (Φ definit) genau dann für alle Teilräume eindeutig sind, falls Ψ und Ψ' im erweiterten Sinne stetig sind, Bedingungen, die z.B. für L_1 nicht erfüllt sind. Hier gilt jedoch die Eindeutigkeitsaussage noch für Haarsche Teilräume nach einem Satz von Jackson (s. [2, S. 322; und 1, S. 219]), der ein Spezialfall des folgenden Satzes ist (μ wie in §2):

SATZ 6. Seien Φ eine definite, stetige Youngsche Funktion, die die Δ_2 -Bedingung erfüllt oder deren rechtsseitige Ableitung Φ' stetig ist, und

V ein n-dimensionaler Haarscher Teilraum. Dann besitzt jede Funktion $x \in C[a, b] \setminus V \subset L^{\Phi}(\mu)$ eine eindeutig bestimmte, beste $L^{\Phi}(\mu)$ -Approximation bezüglich V (in der Luxemburg-Norm).

Beweis. Habe x zwei beste Approximationen v_1 und v_2 , dann ist $v_0 = (1/2)(v_1 + v_2)$ auch eine beste Approximation, d.h. es gilt

$$||x - v_0||_{(\phi)} = ||x - v_1||_{(\phi)} = ||x - v_2||_{(\phi)} = c_0 > 0.$$

Nach Lemma 1 folgt

$$\int_{a}^{b} \left| \Phi\left(\frac{x-v_0}{c_0}\right) - \frac{1}{2} \Phi\left(\frac{x-v_1}{c_0}\right) - \frac{1}{2} \Phi\left(\frac{x-v_2}{c_0}\right) \right| d\mu = 0.$$
 (1)

Aus

$$\Phi\left(\frac{x-v_0}{c_0}\right) = \Phi\left(\frac{x-v_1+x-v_2}{2c_0}\right) \leqslant \frac{1}{2}\Phi\left(\frac{x-v_1}{c_0}\right) + \frac{1}{2}\Phi\left(\frac{x-v_2}{c_0}\right)$$

folgt wegen (1) und den Voraussetzungen über μ

$$\Phi\left(\frac{x-v_0}{c_0}\right) - \frac{1}{2}\Phi\left(\frac{x-v_1}{c_0}\right) - \frac{1}{2}\Phi\left(\frac{x-v_2}{c_0}\right) = 0.$$
 (2)

Nach den Sätzen 3 und 4 hat $x-v_0$ mindestens n Nullstellen. Φ is definit, also haben wegen (2) die Funktionen $x-v_1$, $x-v_2$ und somit auch v_1-v_2 mindestens dieselben n Nullstellen. Da V ein Haarscher Teilraum ist, folgt

$$v_1 = v_2$$
. Q.E.D.

Bemerkung. Statt in der Orlicz- oder Luxemburg-Norm zu approximieren, liegt es im Falle stetiger Youngscher Funktionen Φ nahe, Approximationen bzgl. des Modulars

$$M(x-y) = \int \Phi(x-y) \, d\mu$$

zu betrachten. Mit den hier verwendeten Methoden kann man die Sätze 4 bis 6 (bei Satz 6 soll Φ die Δ_2 -Bedingung erfüllen) auf die modulare Approximation übertragen. Im Falle zweimal stetig differenzierbarer Youngscher Funktionen (d.i. unabhängig von der Δ_2 -Bedingung) haben Walsh und Motzkin [12] verwandte Ergebnisse erhalten.

4. Abschätzung des n-ten Fehlers in der $L^{\phi}(\mu)$ Approximation

Mit den Sätzen über das Nullstellenverhalten der Fehlerfunktion läßt sich die folgende Aussage beweisen, die im Falle L^{∞} gerade den bekannten Bernsteinschen Satz (s. [5, S.77]) ergäbe (μ wie in §2).

SATZ 7. Sei Φ eine stetige Youngsche Funktion, die definit oder deren rechtsseitige Ableitung Φ' stetig ist. Die Funktionen $x, y \in C[a, b]$ mögen in [a, b] Ableitungen bis zur Ordnung (n + 1) besitzen. Für die (n + 1)-ten Ableitungen $x^{(n+1)}$ und $y^{(n+1)}$ gelte

$$||x^{(n+1)}(t)|| \le |y^{(n+1)}(t)|$$
 für alle $t \in [a, b]$.

Dann besteht die Ungleichung

$$E_n^{(\phi)}(x) \leqslant E_n^{(\phi)}(y)$$

wobei $E_n^{(\phi)}(z) = \min_{p_n} \|z - p_n\|_{(\phi)}$ den n-ten Fehler der Approximation in $L^{\phi}(\mu)$ (bezüglich der Luxemburg-Norm) mit Polynomen bis zum Grade n bedeutet.

Für L^p s. [11, S. 477]).

Zum Beweis benötigen wir das

LEMMA 2. Die Funktionen $x, y \in C[a, b]$ mögen in [a, b] Ableitungen bis zur Ordnung (n + 1) besitzen und für die (n + 1)-ten Ableitungen $x^{(n+1)}$ und $y^{(n+1)}$ gelte

$$|x^{(n+1)}(t)| < y^{(n+1)}(t)$$
 für alle $t \in [a, b]$. (*)

Dann besteht die Ungleichung

$$|q_1(t)| < |q_2(t)|$$
 für alle $t \in [a, b]$,

wobei $q_1 - x - x_n$ und $q_2 = y - y_n$ die Reste der Interpolationspolynome x_n und y_n zu x bzw. y für dieselben Interpolationsknoten bedeuten.

Beweis (nach Tsenov [11, S. 473]). Die Hilfsfunktion

$$z(s) = \begin{vmatrix} x(t) - x_n(t), & x(s) - x_n(s) \\ y(t) - y_n(t), & y(s) - y_n(s) \end{vmatrix}$$

hat in $s = t \in [a, b]$ und in den (n + 1) Interpolationsknoten Nullstellen. Also findet man ein $s_0 \in [a, b]$ in dem die (n + 1)-te Ableitung

$$z^{(n+1)}(s) = \begin{vmatrix} x(t) - x_n(t), x^{(n+1)}(s) \\ y(t) - y_n(t), y^{(n+1)}(s) \end{vmatrix}$$

gleich Null ist, d.h.

$$x^{(n+1)}(s_0) q_2(t) = y^{(n+1)}(s_0) q_1(t),$$

und aus (*) folgt die Behauptung.

Q.E.D.

Beweis des Satzes. Es gibt Polynome p_1 und p_2 vom Grad $\leq n$, so daß

$$||x - p_1||_{(\phi)} = E_n^{(\phi)}(x)$$

und

$$||y-p_2||_{(\Phi)}=E_n^{(\Phi)}(y).$$

Nach den Sätzen 3 und 5 hat die Funktion

$$y-p_2$$

mindestens (n + 1) Nullstellen.

Wählen wir aus diesen Nullstellen (n + 1) als Interpolationsknoten und bezeichnen wir mit p das dazugehörige Interpolationspolynom zu x, dann ist nach dem Lemma 2

$$|x(t)-p(t)| \leq |y(t)-p_2(t)|$$
 für alle $t \in [a,b]$,

also auch wegen der Monotonie der Norm $\|\cdot\|_{(\Phi)}$

$$E_n^{(\phi)}(x) = \|x - p_1\|_{(\phi)} \le \|x - p\|_{(\phi)} \le \|y - p_2\|_{(\phi)} = E_n^{(\phi)}(y)$$
Q.E.D.

So wie bei der Čebyšew Approximation (s. [5, S. 78]) liefert jetzt der Satz 7 eine Abschätzung des *n*-ten Fehlers in der $L^{\phi}(\mu)$ Approximation:

Zusatz. Seien Φ und μ wie im Satz 7. Besitzt die Funktion x im Intervall [a,b] eine (n+1)-te Ableitung $x^{(n+1)}$, die entweder der Ungleichung

$$0 \leqslant \alpha \leqslant x^{(n+1)}(t) \leqslant \beta \quad \text{für alle } t \in [a, b]$$
 (1)

oder der Ungleichung

$$0 \leqslant \alpha \leqslant -x^{(n+1)}(t) \leqslant \beta \qquad \text{für alle } t \in [a,b]$$
 (2)

genügt, dann ist

$$\frac{\alpha E_n^{\phi}(t^{n+1})}{(n+1)!} \leqslant E_n^{(\phi)}(x) \leqslant \frac{\beta E_n^{(\phi)}(t^{n+1})}{(n+1)!}.$$

Gilt anstelle von (1) oder (2) nur die Ungleichung

$$|x^{(n+1)}(t)| \leqslant \gamma$$

so folgt

$$E_n^{(\phi)}(x) \leqslant \frac{\gamma E_n^{(\phi)}(t^{n+1})}{(n+1)!}.$$

Der Beweis ergibt sich durch Anwendung von Satz 7 auf die Funktionen x(t) und $c(t^{n+1}/(n+1)!)$.

Beispiele

(1) Im Falle $L_{\mu}^2[a,b]$ (μ wie in §2) bestimmt das Schmidtsche Orthonormalisierungsverfahren aus den Polynomen ein orthonormiertes System (eindeutig). Bezeichnen wir mit a_{n+1} den führenden Koeffizienten (positiv gesetzt) des Polynoms vom Grad (n+1), so ist

$$E_n^{(2)}(t^{n+1}) = 1/a_{n+1}$$
.

(2) Für das Lebesgue-Maß und das Intervall [-1, +1] haben die Čebyšew-Polynome II. Art

$$P_n(t) = \frac{1}{2^n} \frac{\sin((n+1) \operatorname{arc cost})}{\sqrt{1 - t^2}}$$

unter allen Polynomen mit führenden Koeffizienten I in L_I den kleinsten Abstand von Null. Es ist

$$E_n^{(1)}(t^{n+1}) = \frac{1}{2^n}$$

(s. [10, S. 71]).

Zur Berechnung der besten $L^{\varphi}(\mu)$ -Approximation $p_n = \sum_{i=0}^n a_i t^i$ (Φ und Φ' stetig) von t^{n+1} mit Polynomen vom Grad $\leq n$ liefert der Satz 2 folgendes Gleichungssystem

$$\int_{a}^{b} \Phi'\left(\frac{|t^{n+1} - \sum_{i=0}^{n} a_{i}t^{i}|}{a_{n+1}}\right) \operatorname{sign}\left(t^{n+1} - \sum_{i=0}^{n} a_{i}t^{i}\right) t^{k} d\mu = 0 \quad (k = 0, 1, ..., n)$$

und

$$\int_{a}^{b} \Phi\left(\frac{t^{n+1} - \sum_{i=0}^{n} a_{i}t^{i}}{a_{n+1}}\right) = 1.$$

Allgemeiner: Ist Φ und Φ' stetig, $x \in \mathfrak{M}^{\Phi}(\mu)$ und V ein n-dimensionaler Teilraum von $\mathfrak{M}^{\Phi}(\mu)$ mit der Basis v_1 , v_2 ,..., v_n , dann kann nach Satz 2 und Lemma 1 die beste $L^{\Phi}(\mu)$ -Approximation $v = \sum_{i=1}^n a_i v_i$ von x bezüglich V in der Luxemburg-Norm aus folgendem Gleichungssystem ermittelt werden:

$$\int_{T} \Phi'\left(\frac{x - \sum_{i=1}^{n} a_{i} v_{i}}{a_{n+1}}\right) v_{k} d\mu = 0 \qquad (k = 1, 2, ..., n)$$

und

$$\int_{T} \Phi\left(\frac{x - \sum_{i=1}^{n} a_{i} v_{i}}{a_{n+1}}\right) d\mu = 1$$

für L^p (s. [13, S. 39]).

LITERATURVERZEICHNIS

- 1. E. W. CHENEY, "Introduction to Approximation Theory" McGraw-Hill, 1966.
- 2. D. Jackson, Note on a Class of Polynomials of Approximation, *Trans. Amer. Math. Soc.* 22 (1921), 320–326.
- P. Kosmol, "Der Polya Algorithmus in Orliczräumen," Operations Research-Verfahren X, R. Henn, H. P. Künzi, H. Schubert; III. Oberwolfach-Tagung über Operations Research 16-22 VIII, 1970.
- M. A. Krasnosielskij and J. B. Rutickij, "Konvexe Funktionen und Orliczräume," Moskwa, 1958 (Russian).
- G. Meinardus, "Approximation of Functions. Theory and Numerical Methods," Springer-Verlag, Berlin, 1967.
- 6. H. W. MILNES, Convexity of Orlicz Spaces, Pacific J. Math. 7 (1957), 1451-1483.
- 7. M. M. RAO, Smoothness of Orlicz Spaces, *Indag. Math.* 27 (1965), 671-689.
- 8. M. M. RAO, Linear Functionals on Orlicz Spaces: General Theory, *Pacific J. Math.* **25** (1968), 553–585.
- I. SINGER, "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces," Springer-Verlag, Berlin, Band 171, 1970.
- A. F. TIMAN, "Theory of Approximation of Functions of a Real Variable," International Series of Monographs in Pure and Applied Mathematics, Pergamon Press New York, 1963.
- 11. I. V. TSENOV, Über eine Frage der Approximation von Funktionen mit Polynomen, *Mat. Sborn.* **28** (1951), 473-478 (Russian).
- 12. J. L. WALSH UND T. S. MOTZKIN, Best Approximators within a Linear Family on an Interval, *Proc. Nat. Acad. Sci. U.S.A.* 46 (1960), 1225–1233.
- 13. H. Werner, "Vorlesung über Approximationstheorie," Springer-Verlag, Berlin, 1966.
- 14. A. C. ZAANEN, "Linear Analysis," North-Holland, Amsterdam, Holland, 1953.
- 15. A. Zygmund, "Trigonometrical Series," Dover, New York, 1955.